Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder, posing a growing public health challenge. Traditional machine learning models for AD prediction have relied on single omics data or phenotypic assessments, limiting their ability to capture the disease’s molecular complexity and resulting in poor performance. Recent advances in high-throughput multi-omics have provided deeper biological insights. However, due to the scarcity of paired omics datasets, existing multi-omics AD prediction models rely on unpaired omics data, where different omics profiles are combined without being derived from the same biological sample, leading to biologically less meaningful pairings and causing less accurate predictions. To address these issues, we propose UnCOT-AD, a novel deep learning framework for Unpaired Cross-Omics Translation enabling effective multi-omics integration for AD prediction. Our method introduces the first-ever cross-omics translation model trained on unpaired omics datasets, using two coupled Variational Autoencoders and a novel cycle consistency mechanism to ensure accurate bidirectional translation between omics types. We integrate adversarial training to ensure that the generated omics profiles are biologically realistic. Moreover, we employ contrastive learning to capture the disease specific patterns in latent space to make the cross-omics translation more accurate and biologically relevant. We rigorously validate UnCOT-AD on both cross-omics translation and AD prediction tasks. Results show that UnCOT-AD empowers multi-omics based AD prediction by combining real omics profiles with corresponding omics profiles generated by our cross-omics translation module and achieves state-of-the-art performance in accuracy and robustness. Source code is available at https://github.com/abrarrahmanabir/UnCOT-ADmore » « less
-
Antibiotic resistance (AR) presents a global health challenge, necessitating an improved understanding of the ecology, evolution, and dissemination of antibiotic resistance genes (ARGs). Several tools, databases, and algorithms are now available to facilitate the identification of ARGs in metagenomic sequencing data; however, direct annotation of short-read data provides limited contextual information. Knowledge of whether an ARG is carried in the chromosome or on a specific mobile genetic element (MGE) is critical to understanding mobility, persistence, and potential for co-selection. Here we developed ARGContextProfiler, a pipeline designed to extract and visualize ARG genomic contexts. By leveraging the assembly graph for genomic neighborhood extraction and validating contexts through read mapping, ARGContextProfiler minimizes chimeric errors that are a common artifact of assembly outputs. Testing on real, synthetic, and semi-synthetic data, including long-read sequencing data from environmental samples, demonstrated that ARGContextProfiler offers superior accuracy, precision, and sensitivity compared to conventional assembly-based methods. ARGContextProfiler thus provides a powerful tool for uncovering the genomic context of ARGs in metagenomic sequencing data, which can be of value to both fundamental and applied research aimed at understanding and stemming the spread of AR. The source code of ARGContextProfiler is publicly available atGitHub.more » « lessFree, publicly-accessible full text available May 21, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Despite the recent surge of viral metagenomic studies, it remains a significant challenge to recover complete virus genomes from metagenomic data. The majority of viral contigs generated from de novo assembly programs are highly fragmented, presenting significant challenges to downstream analysis and inference. To address this issue, we have developed Virseqimprover, a computational pipeline that can extend assembled contigs to complete or nearly complete genomes while maintaining extension quality. Virseqimprover first examines whether there is any chimeric sequence based on read coverage, breaks the sequence into segments if there is, then extends the longest segment with uniform depth of coverage, and repeats these procedures until the sequence cannot be extended. Finally, Virseqimprover annotates the gene content of the resulting sequence. Results show that Virseqimprover has good performances on correcting and extending viral contigs to their full lengths, hence can be a useful tool to improve the completeness and minimize the assembly errors of viral contigs. Both a web server and a conda package for Virseqimprover are provided to the research community free of charge.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract While numerous environmental factors contribute to the spread of antibiotic resistance genes (ARGs), quantifying their relative contributions remains a fundamental challenge. Similarly, it is important to differentiate acute human health risks from environmental exposure, versus broader ecological risk of ARG evolution and spread across microbial taxa. Recent studies have proposed various methods for achieving such aims. Here, we introduce MetaCompare 2.0, which improves upon original MetaCompare pipeline by differentiating indicators of human health resistome risk (potential for human pathogens of acute resistance concern to acquire ARGs) from ecological resistome risk (overall mobility of ARGs and potential for pathogen acquisition). The updated pipeline's sensitivity was demonstrated by analyzing diverse publicly-available metagenomes from wastewater, surface water, soil, sediment, human gut, and synthetic microbial communities. MetaCompare 2.0 provided distinct rankings of the metagenomes according to both human health resistome risk and ecological resistome risk, with both scores trending higher when influenced by anthropogenic impact or other stress. We evaluated the robustness of the pipeline to sequence assembly methods, sequencing depth, contig count, and metagenomic library coverage bias. The risk scores were remarkably consistent despite variations in these technological aspects. We packaged the improved pipeline into a publicly-available web service (http://metacompare.cs.vt.edu/) that provides an easy-to-use interface for computing resistome risk scores and visualizing results.more » « less
-
Abstract Activated sludge is the centerpiece of biological wastewater treatment, as it facilitates removal of sewage-associated pollutants, fecal bacteria, and pathogens from wastewater through semi-controlled microbial ecology. It has been hypothesized that horizontal gene transfer facilitates the spread of antibiotic resistance genes within the wastewater treatment plant, in part because of the presence of residual antibiotics in sewage. However, there has been surprisingly little evidence to suggest that sewage-associated antibiotics select for resistance at wastewater treatment plants via horizontal gene transfer or otherwise. We addressed the role of sewage-associated antibiotics in promoting antibiotic resistance using lab-scale sequencing batch reactors fed field-collected wastewater, metagenomic sequencing, and our recently developed bioinformatic tool Kairos. Here, we found confirmatory evidence that fluctuating levels of antibiotics in sewage are associated with horizontal gene transfer of antibiotic resistance genes, microbial ecology, and microdiversity-level differences in resistance gene fate in activated sludge.more » « less
An official website of the United States government
